⚡ Performance and Efficiency Benchmarks

This section reports the performance on NPU with FastFlowLM (FLM).

Note:

  • Results are based on FastFlowLM v0.9.31.
  • Under FLM’s default NPU power mode (Performance)
  • Newer versions may deliver improved performance.
  • Fine-tuned models show performance comparable to their base models.

Test System 1:

AMD Ryzen™ AI 7 350 (Kraken Point) with 32 GB DRAM; performance is comparable to other Kraken Point systems.


🚀 Decoding Speed (TPS, or Tokens per Second, starting @ different context lengths)

Model HW 1k 2k 4k 8k 16k 32k 64k 128k
Gemma 3 1B NPU (FLM) 41.1 40.5 39.5 37.3 33.6 27.9 OOC OOC
Gemma 3 4B NPU (FLM) 18.2 18.0 17.8 17.3 16.3 14.8 13.2 11.2

OOC: Out Of Context Length
Each LLM has a maximum supported context window. For example, the gemma3:1b model supports up to 32k tokens.


🚀 Prefill Speed (TPS, or Tokens per Second, with different prompt lengths)

Model HW 1k 2k 4k 8k 16k 32k
Gemma 3 1B NPU (FLM) 1004 1321 1546 1720 1785 1755
Gemma 3 4B NPU (FLM) 528 654 771 881 936 926

🚀 Prefill TTFT with Image (Seconds)

Model HW Image
Gemma 3 4B NPU (FLM) 2.6

This test uses a short prompt: “Describe this image.”